Цифровой шлюз IP телефонии PACS-E1-A

Руководство пользователя Версия 1.0 04.02.2010

Новосибирск 2010

Разработчик и производитель: ООО «Парабел» 630090, Новосибирск-90, а/я 126 <u>http://www.parabel.ru</u> Email: <u>info@parabel.ru</u> Тел/факс: +7-383-2138707

Внимание! Запрещено использование устройства на линиях связи, не оборудованных устройствами грозозащиты и выходящих за пределы одного здания

Содержание

1. ВВЕДЕНИЕ	6
2. СТРУКТУРА ШЛЮЗА	9
3. УСТАНОВКА И ПОДКЛЮЧЕНИЕ	
3.1. ВНЕШНИЕ РАЗЪЕМЫ	
3.3. ПИТАНИЕ И ЗАЗЕМЛЕНИЕ	
3.4.1. Подключение 4 и 8 канального варианта шлюза 3.4.2. Подключение 1 и 2 канального варианта шлюза	
3.4.3. Вопросы грозозащиты	
4.2. НАЧАЛЬНЫЙ LOGIN	
4.3. Выключение и перезагрузка4.5. Восстановление заводских настроек	
5. АРХИТЕКТУРА Е1 ПОДСИСТЕМЫ	
5.1. Синхронизация Е1 интерфейсов5.2. Передача голосовых данных через Е1 интерфейсы	
6. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	23
7. КОМПЛЕКТ ПОСТАВКИ	24

1. Введение

Шлюз PACS-E1-А предназначен для передачи голосовой информации по сетям передачи данных и организации дополнительных видов услуг - голосовой почты, конференций, автоинформатора, записи разговоров. Шлюз может быть использован как узел доступа из сетей VOIP в сеть ТФОП с использованием каналов E1 и наоборот.

Основные особенности устройства

- Количество интерфейсов Е1 до 8
- Поддерживаемые протоколы VOIP SIP, H.323
- Поддерживаемые протоколы ТФОП EDSS1 (EuroISDN), SS7
- Процессор Core2 DUO, 1 Gb RAM, 1 Gb flash, 1 GLAN
- ПО Linux Debian с возможностью обновления и расширения через Интернет
- Корпус 1U, для монтажа в 19" стойку

Внешний вид шлюза PACS-E1-А

Выполняемые функции

Шлюз PACS-E1-А обеспечивает следующие функции:

- распознавание вызова со стороны E1 (VOIP);
- обработку вызова в соответствии с планом соединений;
- транскодирование голосовых потоков;
- преобразование сигнализаций VOIP и ТФОП;
- выдачу голосовых сообщений пользователям в соответствии с планом соединений;

Программное обеспечение шлюза поддерживает следующие протоколы и сервисы.

VOIP сервис

Базируется на Asterisk v1.6

Кодеки G.711 (а,т), G.729AB, GSM

Протоколы SIP, Н.323, RTP

Маршрутизация

BGP4, BGP4+, OSPFv2, OSPFv3, RIPv1, RIPv2, RIPng

Аутентификация пользователей

RADIUS

Безопасность

IP firewall, NAT

Статистика

IP accounting

Управление и конфигурация

Локальная консоль (SVGA, Kbd)

ssh, telnet, ftp, nfs

Диагностика

traceroute, dig, tcpdump, netcat

С помощью менеджера пакетов дополнительно может быть установлена любая утилита из стандартного репозитория Debian.

Варианты исполнения шлюза

PACS-E1-A8	8 Е1 интерфейсов
PACS-E1-A4	4 Е1 интерфейса
PACS-E1-A2	2 Е1 интерфейса
PACS-E1-A1	1 Е1 интерфейс

* - все варианты исполнения включают 1 Gb/s Ethernet интерфейс, 1 GB RAM, 1 GB загрузочный USB флэш

2. Структура шлюза

Внутреннее устройство шлюза изображено на Рис. 1.

Основу шлюза составляет системная плата стандарта mATX, имеющая в своем составе следующие компоненты:

- Процессор Core 2 DUO
- Память DDR2 объемом 1 Гб
- Gigabit Ethernet интерфейс
- Интерфейсы для подключения SVGA дисплея и клавиатуры
- USB 2.0 интерфейсы для подключения периферийных устройств. Один из портов USB использован для подключения загрузочной flash памяти

К особенностям шлюза следует отнести отсутствие жесткого диска и прочих механических устройств, за исключением вентиляторов охлаждения. Это существенно повышает надежность устройства при длительной эксплуатации. Загрузка программного обеспечения шлюза, хранение необходимой конфигурации и статистических данных осуществляется на USB Flash носителе, логически организованном в виде диска.

Поставщик оставляет за собой право выбора оптимальной производительности процессора для конкретного количества каналов E1, с целью достижения наилучшего соотношения цена/качество. Остальные заявленные характеристики в конкретной поставке шлюза могут также отличаться от настоящего руководства в сторону увеличения.

Подключение E1 каналов осуществляется через интерфейсную плату Quasar. Плата устанавливается при сборке компьютера. При тестировании производитель также конфигурирует программное обеспечение для E1 интерфейсов.

Рис. 1. Структура шлюза РАСЅ-Е1-А

3. Установка и подключение

3.1. Внешние разъемы

3.2. Установка шлюза в 19" стойку

Установка корпуса в 19" стойку (шкаф) должна производиться в соответствии с Рис. 2. Шасси шлюза с обеих сторон должно поддерживаться горизонтальными рельсами, прикрепленными к вертикальным опорам шкафа. Недопустим монтаж только за крепежные уголки на передней панели шлюза, так как это приведет к большим механическим напряжениям и деформирует корпус. Крепежные уголки на передней панели служат только для фиксации корпуса в горизонтальной плоскости.

Рис. 2. Монтаж шлюза в стойке

Поддерживающие рельсы являются аксессуарами стойки и не входят в комплект поставки шлюза.

Перед монтажом корпуса рекомендуется отключить все интерфейсные кабели и вынуть flash память из гнезда USB.

3.3. Питание и заземление

Шлюз питается от сети переменного тока 220В через стандартный трехжильный шнур с одним проводом заземления. Шнур питания с так называемой Евро-вилкой входит в комплект поставки. **Использование заземления является обязательным**! Перед подключением изделия необходимо убедиться, что розетка имеет контакты заземления и они подключены к заземляющей шине помещения. В противном случае корпус компьютера и интерфейсные разъемы могут находиться под потенциалом, образующимся в сетевом фильтре блока питания. Наличие этого напряжения не опасно для людей, но может привести к выходу из строя мониторов и других периферийных устройств, подключаемых к шлюзу.

Кроме того, отсутствие заземления приводит к появлению дополнительных наводок от компьютера в сеть питания, а также не обеспечивает защитные функции при возникновении неисправностей в блоке питания.

Перед подключением шнура питания, необходимо убедиться, что переключатель питания на задней панели компьютера установлен в положение «О».

3.4. Подключение интерфейсов Е1

3.4.1. Подключение 4 и 8 канального варианта шлюза

Порт\Вывод	1	2	3	4	5	6	7	8
Port 1,2	TX1+	TX1-	RX1+	TX2+	TX2-	RX1-	RX2+	RX2-
Port 3,4	TX3+	ТХ3-	RX3+	TX4+	TX4–	RX3-	RX4+	RX4-
Port 5,6	TX5+	TX5-	RX5+	TX6+	ТХ6-	RX5-	RX6+	RX6-
Port 7,8	TX7+	TX7-	RX7+	TX8+	TX8-	RX7-	RX8+	RX8-

Примечания.

- 1. RX приемник (вход), TX передатчик (выход)
- 2. В 4-х канальном варианте отсутствуют порты 5,6,7,8

Тип используемого соединителя RJ-45

3.4.2. Подключение 1 и 2 канального варианта шлюза

Рис. 4. Расположение и нумерация портов для 1 и 2 канального шлюза

Порт\Вывод	1	2	3	4	5	6	7	8
Port 1	RX0+	RX0-		TX0+	ТХ0-			
Port 2	RX1+	RX1-		TX1+	TX1-			

Примечания.

- 3. RX приемник (вход), ТХ передатчик (выход)
- 4. В 1 канальном варианте отсутствует порт 2

Тип используемого соединителя RJ-45

3.4.3. Вопросы грозозащиты

Порты E1 шлюзов PACS имеют гальваническую изоляцию на напряжение до 1500 в и защищены от воздействия статического электричества. Тем не менее, подключение к порту наземных (атмосферных) линий E1, выходящих за пределы здания, допускается только при условии применения специальных устройств защиты (УЗ) от перенапряжений.

Особое внимание следует уделить заземлению УЗ и шлюза. Заземление обоих устройств должно быть осуществлено в одной точке с минимальной возможной длиной заземляющих шин. По возможности, питание шлюза должно осуществляться от бесперебойного источника.

4. Включение и начальная конфигурация

Для включения питания устройства необходимо выключатель на задней панели перевести в положение «I» и нажать кнопку включения на передней панели. Заработают вентиляторы охлаждения и шлюз начнет загрузку ПО, которая может занять 2-3 минуты. Конфигурацию шлюза можно осуществлять с помощью локальной консоли (через SVGA монитор и клавиатуру) или удаленно через сеть Ethernet по протоколу ssh.

4.1. Начальный IP адрес

По умолчанию ІР адрес шлюза 172.16.24.2.

Поменять IP адрес можно двумя способами. Для оперативных изменений адреса можно использовать команду:

ifconfig eth0 <адрес> <маска>

Адрес, измененный таким способом, будет актуален до следующей перезагрузки шлюза, после чего снова вернется первоначальный адрес.

Для перманентного изменения IP адреса, необходимо отредактировать файл /etc/network/interfaces. Сделать это можно с помощью текстовых редакторов joe, mcedit или с помощью файлового менеджера mc. После установки нужного IP, необходимо либо перезапустить всю систему командой reboot, либо перезапустить сетевых сервисы, запустив скрипт /etc/init.d/networking.

4.2. Начальный login

При любом варианте подключения, система запросит имя пользователя и пароль.

Hачальные Login/Password = root/root

После первого же входа в систему необходимо изменить пароль командой **passwd**. Команда запросит текущий пароль, после чего предложит ввести новый.

4.3. Выключение и перезагрузка

Для перезагрузки шлюза необходимо использовать команду **reboot**. Выключение шлюза происходит по команде **halt**. Перед выполнением этих команд программное обеспечение шлюза выполняет важную последовательность действий. Во-первых, на flash память записываются изменения конфигурации, произведенные пользователем. Во-вторых, очищается и записывается на flash содержимое кэш-памяти. Без этих действий файловая система шлюза может потерять последние изменения, сделанные пользователем. По этой

причине, использование команд **halt** и **reboot** предпочтительнее аппаратного отключения питания и аппаратного перезапуска кнопкой reset.

4.5. Восстановление заводских настроек

Команда **pb.factory** восстанавливает заводскую конфигурацию программного обеспечения устройства. После ее исполнения необходимо перезагрузить шлюз.

Все пользовательские изменения будут утеряны!

5. Архитектура Е1 подсистемы

5.1. Синхронизация Е1 интерфейсов

Любой из интерфейсов E1 шлюза PACS может работать в режиме ведущего (master) или ведомого (slave). В системе может работать несколько интерфейсов в режиме master и несколько интерфейсов в режиме slave. Выбор между режимами осуществляется пользователем при конфигурации интерфейсов. На Рис. 5 изображена схема подсистемы синхронизации шлюза. В этом примере порты 1 и 2 работают в ведущем режиме, порты 3 и 4 – в ведомом.

Рис. 5. Синхронизация Е1 на примере 4-х канального шлюза

Функцию по синхронизации всей системы выполняет специальное устройство – синхронизатор. В его задачу входит выделение опорной частоты из каналов, работающих в режиме slave. С помощью опорной частоты затем тактируются все основные функциональные блоки системы – TDM коммутатор, PCI подсистема и интерфейсы, работающие в режиме master. Последовательность выбора источника синхронизации следующая:

- 1. Выбираются интерфейсы, работающие в режиме slave.
- 2. Среди них выбираются интерфейсы, не имеющие ошибок фрейма Е1.

- 3. Среди них в качестве источника синхронизации выбирается интерфейс с наименьшим порядковым номером и к нему происходит привязка синхронизации.
- 4. Если интерфейсов в режиме slave нет, в качестве источника синхронизации выбирается внутренний генератор.

Если на интерфейсе, который выбран для синхронизации, происходит потеря фрейма, синхронизатор автоматически переключится на следующий по приоритету интерфейс. Для примера на Рис. 5, в качестве источника синхронизации будет выбран порт 3, если оба порта имеют нормальный сигнал. Если порт 3 сигнал потеряет, вся система будет привязана к порту 4 автоматически. Если потеряют сигнал оба порта, система перейдет на тактирование от внутреннего генератора.

5.2. Передача голосовых данных через Е1 интерфейсы

Основные функции E1 подсистемы – коммутация канальных интервалов E1 (TS – timeslot) и преобразование синхронных потоков в пакеты для их последующей обработки программным обеспечением. Схема обработки данных приведена на Рис. 6.

Каждый порт E1 формирует фрейм E1 в соответствии со стандартами G.703, G.704, состоящий из 32 канальных интервалов TS0..TS31. Канальный интервал TS0 является служебным и используется для формирования самого фрейма. В передаче данных он не участвует и далее не рассматривается. Таким образом, каждый порт E1 предоставляет 31 канальный интервал для передачи данных. Нумерация канальных интервалов в системе сквозная - порт 1 занимает TS1..TS31, порт 2 занимает TS32..TS62 и так далее. Итого, в 8-канальном варианте шлюза имеется 248 интервалов TS1..TS248, доступных для передачи голосовых данных.

Сформированные портами канальные интервалы поступают на TDM коммутатор. С помощью этого устройства пользователь может соединить между собой произвольные группы интервалов, принадлежащие одному или разным портам E1. Кроме того, TDM коммутатор направляет нужные интервалы для их дальнейшего оформления в пакеты контроллерами DMA.

DMA контроллер формирует из выбранного пользователем подмножества канальных интервалов {TSAn} пакет с данными. Сформированный пакет отправляется в буфера памяти компьютера, где обрабатывается драйвером карты E1.

6. Технические характеристики

Параметр	Значение			
Е1 интерфейсы				
Тип соединителя	RJ45, 8 контактов			
Тип линии	симметричная витая пара, 120 ом			
Номинальное напряжение импульса	3 B +- 10%			
Скорость передачи данных	2048 кбит/с +- 50 ppm			
Кодирование	AMI/HDB3			
Затухание сигнала, не более	-40 дб			
Соответствие стандартам	MCЭ-T G.703, G.704, G.706, G.732, G.823			
Форма импульса	по рекомендации G.703			
Размах фазового дрожания	по рекомендации G.823			
Структура кадров	по рекомендации G.704			
Ethernet интерфейс				
Тип соединителя	RJ45			
Поддерживаемые скорости	10,100,1000 Мбит/с			
Общ	Общие характеристики			
CPU	Intel Core 2 DUO			
Объем памяти	1 Гб, расширяемый			
Объем Flash	1 Гб			
Прочие интерфейсы	SVGA, LPT, Serial, USB, KBD			
Напряжение питания	220 B +- 20%			
Потребляемая мощность	Не более 250 Вт			
Условия эксплуатации	Температура воздуха от 5 до 50° С			
	Относительная влажность до 80% при 25° С			
Размеры	482х377х44 мм			
Bec	7 кг			
Размеры упаковки	550х560х160 мм			

7. Комплект поставки

- Шлюз PACS-E1-A (включая CPU, E1 карту Quasar, DDR2 модуль) 1 шт
- Внешний USB flash 1 шт
- CD (DVD) с документацией 1 шт
- Шнур питания (Евровилка) 1 шт